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Disclaimer

This talk is NOT about:

• Deep learning, AlphaGo, [insert hype here] ...
• What I have been working on recently (network sampling,

statistical relational learning)

This talk is about:

• A fundamental theorem in probability theory
• A recent development in graph limit theory
• And how they are connected to nonparametric models of

network data
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Graph Data



Graph Data

A graph G = (V, E), where

• V = {1, 2, · · · ,n} is the set of vertices;
• E ⊆ V× V is the set of edges,

can be represented by an adjacency matrix A, where

Aij =

1, if (i, j) ∈ E;
0, otherwise.

Assume G is simple and undirected ⇒ A is binary, symmetric,
and Aii = 0, ∀i.
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Graph Data (Cont’d)GRAPH DATA

[Hof08]Peter Orbanz 14 / 27

They are the same network!

Peter Orbanz. http://stat.columbia.edu/~porbanz/talks/slides_exarrays.pdf 4/21
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Exchangeable Random Graphs



Exchangeablility

Definition
An exchangeable sequence is an infinite sequence X1, X2, · · · of
random variables whose joint distribution satisfies

P(X1 ∈ A1, X2 ∈ A2, · · · ) = P(Xπ(1) ∈ A1, Xπ(2) ∈ A2, · · · )

for every permutation π of N := {1, 2, · · · } and collection
A1,A2, · · · of (measurable) sets.

In words, order of observations does not matter.

i.i.d. ⇒ exchangeable; exchangeable ⇏ i.i.d.

P. Orbanz and D. M. Roy (2015). Bayesian Models of Graphs, Arrays and Other Exchangeable Random Structures.
IEEE Trans. Pattern Anal. Mach. Intell. 37(2):437-461. 5/21



Exchangeablility (Cont’d)

Example (Polyá’s Urn scheme)
Consider an urn with b black balls and w white balls. Draw a
ball at random and note its color. Replace the ball together
with a balls of the same color. Repeat the procedure ad
infinitum. Let Xi = I{the i-th draw yields a black ball}.

The sequence X1, X2, · · · is exchangeable but not i.i.d./Markov.

E.g., P(X1 = 1, X2 = 1, X3 = 0, X4 = 1)

=
b

b+ w
b+ a

b+ w+ a
w+ a

b+ w+ 2a
b+ 2a

b+ w+ 3a

=
b

b+ w
w+ a

b+ w+ 2a
b+ a

b+ w+ a
b+ 2a

b+ w+ 3a
= P(X1 = 1, X2 = 0, X3 = 1, X4 = 1).

Steffen Lauritzen. http://www.stats.ox.ac.uk/~steffen/teaching/grad/definetti.pdf 6/21
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de Finetti’s Theorem

Theorem (de Finetti, 1931)
Let X1, X2, · · · be an infinite sequence of random variables with
values in a space X . The sequence X1, X2, · · · is exchangeable if
and only if there is a random probability measure Θ on X—i.e.,
a random variable with values in the setM(X ) of probability
distributions on X—such that the Xi are conditionally i.i.d.
given Θ and

P(X1 ∈ A1, X2 ∈ A2, · · · ) =
∫
M(X )

∞∏
i=1

θ(Ai)ν(dθ)

where ν is the distribution of Θ.

P. Orbanz and D. M. Roy (2015). Bayesian Models of Graphs, Arrays and Other Exchangeable Random Structures.
IEEE Trans. Pattern Anal. Mach. Intell. 37(2):437-461. 7/21



Exchangeable Random Graphs

Adj. matrix of undirected graph = binary & symmetric array

⇒ de Finetti exchangeability too strong!

⇒ Need generalization of exchangeability to arrays.

EXCHANGEABLE ARRAYS

Joint exchangeability

⇡

⇡

� = ⇡ ⌦ ⇡

Separate exchangeability

⇡1

⇡2

� = ⇡1 ⌦ ⇡2

For d-Arrays:
� = ⇡ ⌦ . . . ⌦ ⇡| {z }

d times

� = ⇡1 ⌦ . . . ⌦ ⇡d

Peter Orbanz 16 / 27
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Exchangeable Arrays

Definition
A random array (Xij)i, j∈N is called separately exchangeable if

(Xij)
d
= (Xπ(i)π′(j))

holds for every pair of permutations π, π′ of N.

Definition
A random array (Xij)i, j∈N is called jointly exchangeable if

(Xij)
d
= (Xπ(i)π(j))

holds for every permutation π of N.

P. Orbanz and D. M. Roy (2015). Bayesian Models of Graphs, Arrays and Other Exchangeable Random Structures.
IEEE Trans. Pattern Anal. Mach. Intell. 37(2):437-461. 9/21



Aldous-Hoover Theorem

Theorem (Aldous, 1981-Hoover, 1979)
A random array (Xij)i, j∈N is

• jointly exchangeable iff. ∃ a random measurable function
F : [0, 1]3 → X s.t.

(Xij)
d
= (F(Ui,Uj,U{{i, j}}))

• separately exchangeable iff. ∃ a random measurable
function F : [0, 1]3 → X s.t.

(Xij)
d
= (F(Ui,U′

j,Uij))

where Ui,U{{i, j}},U′
j,Uij

i.i.d.∼ Uniform[0, 1].

P. Orbanz and D. M. Roy (2015). Bayesian Models of Graphs, Arrays and Other Exchangeable Random Structures.
IEEE Trans. Pattern Anal. Mach. Intell. 37(2):437-461. 10/21



Exchangeable Random Graphs

Definition
An undirected random graph G = (N, E) with an infinite
(countable) vertex set N and a random edge set E is called an
exchangeable random graph if its random adjacency matrix
A = (Aij) is a jointly exchangeable array.

Thus, G is exchangeable if its distribution is invariant under
relabeling of the vertices.

P. Orbanz and D. M. Roy (2015). Bayesian Models of Graphs, Arrays and Other Exchangeable Random Structures.
IEEE Trans. Pattern Anal. Mach. Intell. 37(2):437-461. 11/21



Exchangeable Random Graphs

Adjacency matrix A = (Aij) symmetric & binary:

Aij
d
= F(Ui,Uj,U{i, j})

d
= I{U{i, j} < W(Ui,Uj)}

Sample W : [0, 1]2 → [0, 1] measurable & symmetric (graphon);

Sample U1,U2, · · ·
i.i.d.∼ Uniform[0, 1];

Sample Aij ∼ Bernoulli(W(Ui,Uj)) for i < j.

“OR-nonexch” — 2013/7/27 — 14:13 — page 9 — #9

9

0
0

1
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W (U1, U2)

U{{1,2}}
W

Fig 4: Sampling an exchangeable random graph according to Eq. (3.4). Left: An instance of the random function W , chosen here as
W = min{x, y}, as a heat map on [0, 1]2. In the case depicted here, the edge (1, 2) is not present in the graph, since U{{1,2}} > W (U1, U2).
Middle: The adjacency matrix of a 50-vertex random graph, sampled from the function on the left. Rows in the matrix are ordered
according the value, rather than the index, of Ui, resulting in a matrix resembling W . Right: A plot of the random graph sample. The
highly connected vertices plotted in the center correspond to values lower right region in [0, 1]2.

X
ij

:= f(U
i

, U
j

, U{{i,j}}). Thus, p( . , f) is a family of dis-
tributions parametrized by f , or more formally, a proba-
bility kernel. X is then sampled as

F ⇠ µ (3.10)

X|F ⇠ p( . , F ) . (3.11)

In Bayesian modeling terms, µ is a prior distribution, F a
parameter variable, and p the observation model.

If X is separately exchangeable, we similarly sample

F ⇠ µ (3.12)

8i 2 N : U row

i

⇠
iid

Uniform[0, 1] (3.13)

8j 2 N : U col

j

⇠
iid

Uniform[0, 1] (3.14)

8i, j 2 N : U
ij

⇠
iid

Uniform[0, 1] (3.15)

and set

8i, j 2 N : X
ij

:= F (U row

i

, U col

j

, U
ij

) . (3.16)

Analogous to p, we define a probability kernel q(X 2 . , f)
which summarizes Eq. (3.13)-Eq. (3.15), and obtain

F ⇠ µ (3.17)

X|F ⇠ q( . , F ) . (3.18)

Bayesian models are usually defined by defining a prior
and a sampling distribution (i.e., likelihood). We hence
have to stress here that, in the representation above, the
sampling distributions p and q are generic—any jointly or
separately exchangeable matrix can be represented with
these sampling distributions, and specifying the model is
equivalent to specifying the prior, i.e., the distribution of
F .

Remark 3.10 (Non-exchangeable arrays). Various
types of array-valued data depend on time or some other
covariate. In this case, joint or separate exchangeability
can be assumed to hold marginally, as described in Sec-
tion 2.3. For time-dependent graph data, for example, one

would assume that joint exchangeability holds marginally
at each point in time. In this case, the random mapping
⇠ in (2.19) becomes a time-indexed array. The random
function W ( . , . ) in Eq. (3.4) then turns into a function
W ( . , . , t) additionally dependent on time—which raises
new modeling questions, e.g., whether the stochastic pro-
cess (W ( . , . , t))

t

should be smooth. More generally, the
discussion in 2.3 applies to joint and separate exchange-
ability just as it does to exchangeable sequences.

There is a much deeper reason why exchangeability may
not be an appropriate assumption—too oversimplify, be-
cause exchangaeble models of graphs may generate too
many edges—which is discussed in depth in Section 7. /

3.4. Uniqueness of representations. In the repre-
sentation Eq. (3.4), random graph distributions are
parametrized by measurable functions w : [0, 1]2 ! [0, 1].
This representation is not unique, as illustrated in Fig. 5.
In mathematics, the lack of uniqueness causes a range of
technical di�culties. In statistics, it means that w, when
regarded as a model parameter, is not identifiable. It is
possible, though mathematically challenging, to treat the
estimation problem up to equivalence of functions; Kallen-
berg [35, Theorem 4] has solved this problem for a large
class of exchangeable arrays (see also [18, §4.4] for recent
related work). For now, we will only explain the prob-
lem; a unique parametrizations exists, but it is based on
the notion of a graph limit, and has to be postponed until
Section 5.

To see that the representation by w is not unique, note
that the only requirement on the random variables U

i

in
Theorem 3.4 is that they are uniformly distributed. Sup-
pose we define a bijective function � : [0, 1] ! [0, 1] with
the property that, if U is a uniform random variable, �(U)
is still uniformly distributed. Such a mapping is called a
measure-preseving transformation (MPT), because it
preserves the uniform probability measure. Intuitively, an
MPT generalizes the concept of permuting the nodes of
a graph to the representation of graphs by functions on

P. Orbanz and D. M. Roy (2015). Bayesian Models of Graphs, Arrays and Other Exchangeable Random Structures.
IEEE Trans. Pattern Anal. Mach. Intell. 37(2):437-461. 12/21
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Graph Limits

Rado graph: Aij = Aji
i.i.d.∼ Bernoulli(1/2), i ̸= j ∈ N.

The pixel picture is simply a graphic constructed from the adjacency matrix by turning the 1’s into black
boxes and erasing the 0’s. It’s important to note that the adjacency matrix and pixel picture correspond
to specific labelings of the original graph, and so an unlabeled graph has many di↵erent representations
as such. Now consider scaling pixel pictures for each of the graphs in the sequence (Rn)n to the unit
square [0, 1]2. Here are example pixel pictures for R

10

, R
50

, and R
100

.

Standing way back, or imagining some sort of averaging process, the limit of this sequence of graphs is
suggested by the pixel pictures to be the constant 1/2 function on [0, 1]2. The constant 1/2 function on
[0, 1]2 is an example of a graphon (short for graph function). Before defining graphons and making this
notion of convergence precise, let’s consider some more examples.

Let Tn be the graph on the vertex set {1, 2, . . . , n} where vertices i, j are connected if i + j  n. Such
graphs are called threshold graphs. The limit of this sequence of graphs as indicated by their pixel
pictures is the graphon taking value 1 on the set {x + y  1} and 0 elsewhere. (Since matrixes are
indexed with (0, 0) in the top left corner, so too will our unit square be.)

The complete bipartite graph Kn,n seems to have two di↵erent possible limits, depending on the way it
is labeled. The limit of (Kn,n)n is in fact unique and is represented by the graphon drawn below. The
reader is encouraged to return to this example after digesting the metric determining this convergence.

3

Limit graphon (graph function):

f : [0, 1]2 → [0, 1], (x, y) 7→ 1
2 .

D. Glasscock, What is a graphon?, Notices of the AMS 62 (2015), no. 1. 13/21
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Graph Limits (Cont’d)

Growing uniform attachment: Let G1 = •. For n ≥ 2, construct
Gn from Gn−1 by adding one new vertex, then, drawing an edge
between each pair of non-adjacent vertices with probability 1

n .

Finally, consider the following inductively defined sequence of graphs (Gn)n. Let G
1

= . For n � 2,
construct Gn from Gn�1

by adding one new vertex, then, considering each pair of non-adjacent vertices in
turn, drawing an edge between them with probability 1/n. This is called a growing uniform attachment
graph sequence, and the pixel pictures below come from one particular instance of a such a sequence.
This sequence of graphs almost surely limits to the graphon 1�max(x, y).

It is finally time to define graphons properly.

Definitions A labeled graphon is a symmetric, Lebesgue-measurable function from [0, 1]2 to [0, 1] (mod-
ulo the usual identification almost everywhere). An unlabeled graphon is a graphon up to relabeling,
where a relabeling is given by an invertible, measure preserving transformation of the [0, 1] interval.
More formally, a labeled graphon W determines the equivalence class of graphons

[W ] =

⇢
W' : (x, y) 7! W

�
'(x),'(y)

� ����
' an invertible, measure

preserving transformation of [0, 1]

�
.

Such equivalence classes are called unlabeled graphons.

It is helpful to think of graphons as edge-weighted graphs on the vertex set [0, 1]. In this sense, the
sequence (Rn)n of instances of random graphs with edge probability 1/2 almost surely limits to the
complete graph on a continuum of vertices, each edge with weight 1/2. Also, note that any graph gives
rise to several labeled graphons via its various pixel pictures and that each of these graphons correspond
to the same unlabeled graphon.

This viewpoint also allows us to extend homomorphism densities to graphons in an intuitive way. This
will allow us to see how the limit of the graph sequence (Rn)n, the constant 1/2 graphon, solves the
minimization problem from the previous section.

For a finite graph G, the value t( , G) may be computed by giving each vertex of G a mass of 1/n and
integrating the edge indicator function over all ordered pairs of vertices. In complete analogy, the edge
density of a graphon W is given by the expression

t( ,W ) =

Z

[0,1]2
W (x, y) dxdy.

It is not hard to see then that

t( ,W ) =

Z

[0,1]4
W (x

1

, x
2

)W (x
2

, x
3

)W (x
3

, x
4

)W (x
4

, x
1

) dx
1

dx
2

dx
3

dx
4

.

It is straightforward from here to write down the formula for the homomorphism density t(H,W ) of a
finite graph H into a graphon W .

Finally, in the case of W ⌘ 1/2 as the limit graphon of (Rn)n, we see that t( ,W ) = 1/2 and
t( ,W ) = 1/16, solving the minimization problem from the previous section elegantly.

4

Limit graphon:

f : [0, 1]2 → [0, 1], (x, y) 7→ 1 − max(x, y).

D. Glasscock, What is a graphon?, Notices of the AMS 62 (2015), no. 1. 14/21
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Finally, in the case of W ⌘ 1/2 as the limit graphon of (Rn)n, we see that t( ,W ) = 1/2 and
t( ,W ) = 1/16, solving the minimization problem from the previous section elegantly.

4

Limit graphon:

f : [0, 1]2 → [0, 1], (x, y) 7→ 1 − max(x, y).

D. Glasscock, What is a graphon?, Notices of the AMS 62 (2015), no. 1. 14/21



Graphons

Definition
A labeled graphon is a symmetric, Lebesgue-measurable a.e.
function W : [0, 1]2 → [0, 1]. A labeled graphon determines the
equivalence class of graphons

[W] = {Wϕ : (x, y) 7→ W(ϕ(x), ϕ(y))},

where ϕ is an invertible, measure-preserving transformation of
[0, 1]. Such equivalence classes are called unlabeled graphons.

D. Glasscock, What is a graphon?, Notices of the AMS 62 (2015), no. 1. 15/21



Graphons (Cont’d)

Definition
The cut distance between two labeled graphons W and U is

δ□(W,U) = inf
ϕ,ψ m.p.t.
of [0,1]

sup
S,T⊆[0,1]

measurable

∣∣∣∣∫
S×T

Wϕ(x, y)− Uψ(x, y)
∣∣∣∣ .

Theorem
Every graphon is the δ□-limit of a sequence of finite graphs.

Theorem (Lovász-Szegedy)
Let G be the space of unlabeled graphons (modulo weak
isometry). The metric space (G, δ□) is compact.

D. Glasscock, What is a graphon?, Notices of the AMS 62 (2015), no. 1. 16/21



Graphon Estimation



Exchangeable Random Graphs

Adjacency matrix A = (Aij) symmetric & binary:

Aij
d
= F(Ui,Uj,U{i, j})

d
= I{U{i, j} < W(Ui,Uj)}

Sample W : [0, 1]2 → [0, 1] measurable & symmetric (graphon);

Sample U1,U2, · · ·
i.i.d.∼ Uniform[0, 1];

Sample Aij ∼ Bernoulli(W(Ui,Uj)) for i < j.
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0
0

1
1

U1 U2

U1

U2

0

1

W (U1, U2)

U{{1,2}}
W

Fig 4: Sampling an exchangeable random graph according to Eq. (3.4). Left: An instance of the random function W , chosen here as
W = min{x, y}, as a heat map on [0, 1]2. In the case depicted here, the edge (1, 2) is not present in the graph, since U{{1,2}} > W (U1, U2).
Middle: The adjacency matrix of a 50-vertex random graph, sampled from the function on the left. Rows in the matrix are ordered
according the value, rather than the index, of Ui, resulting in a matrix resembling W . Right: A plot of the random graph sample. The
highly connected vertices plotted in the center correspond to values lower right region in [0, 1]2.

X
ij

:= f(U
i

, U
j

, U{{i,j}}). Thus, p( . , f) is a family of dis-
tributions parametrized by f , or more formally, a proba-
bility kernel. X is then sampled as

F ⇠ µ (3.10)

X|F ⇠ p( . , F ) . (3.11)

In Bayesian modeling terms, µ is a prior distribution, F a
parameter variable, and p the observation model.

If X is separately exchangeable, we similarly sample

F ⇠ µ (3.12)

8i 2 N : U row

i

⇠
iid

Uniform[0, 1] (3.13)

8j 2 N : U col

j

⇠
iid

Uniform[0, 1] (3.14)

8i, j 2 N : U
ij

⇠
iid

Uniform[0, 1] (3.15)

and set

8i, j 2 N : X
ij

:= F (U row

i

, U col

j

, U
ij

) . (3.16)

Analogous to p, we define a probability kernel q(X 2 . , f)
which summarizes Eq. (3.13)-Eq. (3.15), and obtain

F ⇠ µ (3.17)

X|F ⇠ q( . , F ) . (3.18)

Bayesian models are usually defined by defining a prior
and a sampling distribution (i.e., likelihood). We hence
have to stress here that, in the representation above, the
sampling distributions p and q are generic—any jointly or
separately exchangeable matrix can be represented with
these sampling distributions, and specifying the model is
equivalent to specifying the prior, i.e., the distribution of
F .

Remark 3.10 (Non-exchangeable arrays). Various
types of array-valued data depend on time or some other
covariate. In this case, joint or separate exchangeability
can be assumed to hold marginally, as described in Sec-
tion 2.3. For time-dependent graph data, for example, one

would assume that joint exchangeability holds marginally
at each point in time. In this case, the random mapping
⇠ in (2.19) becomes a time-indexed array. The random
function W ( . , . ) in Eq. (3.4) then turns into a function
W ( . , . , t) additionally dependent on time—which raises
new modeling questions, e.g., whether the stochastic pro-
cess (W ( . , . , t))

t

should be smooth. More generally, the
discussion in 2.3 applies to joint and separate exchange-
ability just as it does to exchangeable sequences.

There is a much deeper reason why exchangeability may
not be an appropriate assumption—too oversimplify, be-
cause exchangaeble models of graphs may generate too
many edges—which is discussed in depth in Section 7. /

3.4. Uniqueness of representations. In the repre-
sentation Eq. (3.4), random graph distributions are
parametrized by measurable functions w : [0, 1]2 ! [0, 1].
This representation is not unique, as illustrated in Fig. 5.
In mathematics, the lack of uniqueness causes a range of
technical di�culties. In statistics, it means that w, when
regarded as a model parameter, is not identifiable. It is
possible, though mathematically challenging, to treat the
estimation problem up to equivalence of functions; Kallen-
berg [35, Theorem 4] has solved this problem for a large
class of exchangeable arrays (see also [18, §4.4] for recent
related work). For now, we will only explain the prob-
lem; a unique parametrizations exists, but it is based on
the notion of a graph limit, and has to be postponed until
Section 5.

To see that the representation by w is not unique, note
that the only requirement on the random variables U

i

in
Theorem 3.4 is that they are uniformly distributed. Sup-
pose we define a bijective function � : [0, 1] ! [0, 1] with
the property that, if U is a uniform random variable, �(U)
is still uniformly distributed. Such a mapping is called a
measure-preseving transformation (MPT), because it
preserves the uniform probability measure. Intuitively, an
MPT generalizes the concept of permuting the nodes of
a graph to the representation of graphs by functions on

P. Orbanz and D. M. Roy (2015). Bayesian Models of Graphs, Arrays and Other Exchangeable Random Structures.
IEEE Trans. Pattern Anal. Mach. Intell. 37(2):437-461. 17/21



Graphon Estimation

Problem: Estimate graphon W from a set of observed networks.

Nonparametric regression: estimate W from {(Ui,Uj), Aij}i, j∈N.

Challenge: design points {(Ui,Uj)} are latent.

Proposed estimators:

• Stochastic blockmodel approximation [Airoldi et.al., 2013], [Gao et.al., 2015]

• Histogram estimator (sorting-and-smoothing) [Chan and Airoldi, 2014]

• Gaussian process model [Lloyd et.al., 2012], [Orbanz and Roy, 2015]

E. M. Airoldi, T. B. Costa, and S. H. Chan. (2013) Stochastic Blockmodel Approximation of a Graphon:
Theory and Consistent Estimation. NIPS ’13.

Gao, C., Lu, Y. and Zhou, H. H. (2015). Rate-Optimal Graphon Estimation. Ann. Statist. 43(6):2624-2652.
S.H. Chan and E.M. Airoldi (2014). A Consistent Histogram Estimator for Exchangeable Graph Models. ICML ’14.
J.R. Lloyd, P. Orbanz, Z. Ghahramani, and D.M. Roy (2012). Random Function Priors for Exchangeable Arrays with

Applications to Graphs and Relational Data. NIPS ’12.
P. Orbanz and D. M. Roy (2015). Bayesian Models of Graphs, Arrays and Other Exchangeable Random Structures.

IEEE Trans. Pattern Anal. Mach. Intell. 37(2):437-461. 18/21



Applications

• Community detection
• Link prediction:

P((i, j) ∈ E) = P(Aij = 1) = W(Ui,Uj)

• Network comparison & hypothesis testing

Bickel, P. J. and Chen, A. (2009). A Nonparametric View of Network Models and Newman-Girvan and Other Modularities.
Proc. Natl. Acad. Sci. USA 106:21068-21073. 19/21



Bad News

Real-world graphs are sparse (finite # of edges per vertex).

• Power-law degree distribution;
• Small-world phenomena.

Theorem (Misspecification)
If a random graph is exchangeable, it is either dense or empty.

Proof.
For a random graph Gn with n vertices, the expected proportion of
present edges is

p :=

∫
[0,1]2

W(x, y)dx dy.

If p = 0, Gn is empty; if p > 0, Gn has p ·
(n

2
)
= Θ(n2) edges in

expectation.

P. Orbanz and D. M. Roy (2015). Bayesian Models of Graphs, Arrays and Other Exchangeable Random Structures.
IEEE Trans. Pattern Anal. Mach. Intell. 37(2):437-461. 20/21
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Open Problem

The limit object of a convergent sequence of sparse graphs in
the cut metric is always the empty graphon.

Representation theorems for sparse random graphs?

P. Orbanz and D. M. Roy (2015). Bayesian Models of Graphs, Arrays and Other Exchangeable Random Structures.
IEEE Trans. Pattern Anal. Mach. Intell. 37(2):437-461.

F. Caron and E.B. Fox (2015). Sparse Graphs using Exchangeable Random Measures. arXiv:1401.1137, 2015. 21/21



Thank you!
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