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DISCLAIMER

This talk is NOT about:

- Deep learning, AlphaGo, [insert hype here] ...

- What | have been working on recently (network sampling,
statistical relational learning)

This talk is about:

- A fundamental theorem in probability theory
- Arecent development in graph limit theory

- And how they are connected to nonparametric models of
network data

1/21



OUTLINE

Graph Data
Exchangeable Random Graphs
Graph Limits and Graphons

Graphon Estimation

2/21



GRAPH DATA



GRAPH DATA

A graph G = (V,E), where

- V={1,2,---,n} is the set of vertices;
- EC V x Visthe set of edges,

can be represented by an adjacency matrix A, where

1, if(i,)) €E

A,‘j = .
0, otherwise.

Assume G is simple and undirected = A is binary, symmetric,
and Aii = O,Vi.
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GRAPH DATA (CONT'D)

Peter Orbanz. http://stat.columbia.edu/~porbanz/talks/slides_exarrays.pdf 4121
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EXCHANGEABLE RANDOM GRAPHS



EXCHANGEABLILITY

Definition
An exchangeable sequence is an infinite sequence X1, X5, - -+ of
random variables whose joint distribution satisfies

]P)(X1 S A1,X2 € Az,- ) = P(Xﬂ.(q) c A1,X7r(2) S AZ,"')

for every permutation = of N := {1,2,--- } and collection
Aq, Ay, - -+ of (measurable) sets.

In words, order of observations does not matter.

l.i.d. = exchangeable; exchangeable % i.i.d.

P. Orbanz and D. M. Roy (2015). Bayesian Models of Graphs, Arrays and Other Exchangeable Random Structures.
IEEE Trans. Pattern Anal. Mach. Intell. 37(2):437-461. 5/21



EXCHANGEABLILITY (CONT'D)

Example (Polya’s Urn scheme)

Consider an urn with b black balls and w white balls. Draw a
ball at random and note its color. Replace the ball together
with a balls of the same color. Repeat the procedure ad
infinitum. Let X; = I{the i-th draw yields a black ball}.

The sequence X, Xy, - - - is exchangeable but not i.i.d./Markov.

Eg, P(X1 =1,%=1,X=0,X, = 1)
b b+a w+a b+2a

" btwbtwt+ab+w+2ab+w+3a
b w+a b-+a b+ 2a

T bt+wb+w+2ab+w+ab+w+3a
fr— ,D(X1 fr— 17X2 g 07X3 = 17X4 - 1)

Steffen Lauritzen. http://www.stats.ox.ac.uk/~steffen/teaching/grad/definetti.pdf 6/21
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DE FINETTI'S THEOREM

Theorem (de Finetti, 1931)

Let X1, X3, - -+ be an infinite sequence of random variables with
values in a space X. The sequence X1,X,,--- is exchangeable if
and only if there is a random probability measure © on X—l.e,,
a random variable with values in the set M(X) of probability
distributions on X—such that the X; are conditionally I.1.d.
given © and

P(X; € A1, X; € Ay, - - / )v(d6)
M(X

where v is the distribution of ©.

P. Orbanz and D. M. Roy (2015). Bayesian Models of Graphs, Arrays and Other Exchangeable Random Structures.
IEEE Trans. Pattern Anal. Mach. Intell. 37(2):437-461. 7/21



EXCHANGEABLE RANDOM GRAPHS

Adj. matrix of undirected graph = binary & symmetric array
= de Finetti exchangeability too strong!

= Need generalization of exchangeability to arrays.

Peter Orbanz. http://stat.columbia.edu/~porbanz/talks/slides_exarrays.pdf 8/21
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Adj. matrix of undirected = binary & symmetric
= de Finetti exchangeability too strong!

= Need generalization of exchangeability to arrays.
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EXCHANGEABLE ARRAYS

Definition
A random array (Xj); jen is called separately exchangeable if

d
Xij) = Kx(iye ()
holds for every pair of permutations «, 7’ of N.

Definition
A random array (X;); jen is called jointly exchangeable if

d
(Xij) = Kaiy=())

holds for every permutation = of N.

P. Orbanz and D. M. Roy (2015). Bayesian Models of Graphs, Arrays and Other Exchangeable Random Structures.
IEEE Trans. Pattern Anal. Mach. Intell. 37(2):437-461. 9/21



ALDOUS-HOOVER THEOREM

Theorem (Aldous, 1981-Hoover, 1979)
A random array (X;)i jen IS

- jointly exchangeable iff. 3 a random measurable function
F:[0,1 — X st

d
(i) = (F(Ui, U, Ui )

- separately exchangeable iff. 3 a random measurable
function F: [0,1]® — X s.t.

() £ (F(U;, U}, Uy)
where U,’,U{{,’J}},U U,} N Umform[O 1]

P. Orbanz and D. M. Roy (2015). Bayesian Models of Graphs, Arrays and Other Exchangeable Random Structures.
IEEE Trans. Pattern Anal. Mach. Intell. 37(2):437-461. 10/21



EXCHANGEABLE RANDOM GRAPHS

Definition

An undirected random graph G = (N, E) with an infinite
(countable) vertex set N and a random edge set E is called an
exchangeable random graph if its random adjacency matrix
A = (Aj) is a jointly exchangeable array.

Thus, G is exchangeable if its distribution is invariant under
relabeling of the vertices.

P. Orbanz and D. M. Roy (2015). Bayesian Models of Graphs, Arrays and Other Exchangeable Random Structures.
IEEE Trans. Pattern Anal. Mach. Intell. 37(2):437-461. 11/21



EXCHANGEABLE RANDOM GRAPHS

Adjacency matrix A = (A;) symmetric & binary:

d d
Aj = F(Ui, Uj, U jy) = {Ug y < W(U;, U}

P. Orbanz and D. M. Roy (2015). Bayesian Models of Graphs, Arrays and Other Exchangeable Random Structures.
IEEE Trans. Pattern Anal. Mach. Intell. 37(2):437-461. 12/21



EXCHANGEABLE RANDOM GRAPHS

Adjacency matrix A = (A;) symmetric & binary:
Ay £ F(UL Uy, Ugjy) £ H{Ug < W(U3 Up)}
Sample W: [0,1)? — [0,1] measurable & symmetric (graphon);
Sample Uy, Uy, - - HL- Uniform|0, 1];
Sample Aj ~ Bernoulli(W(U;, U))) for i < J.

1

Uttr.2n
w
TS W (U, Us)

P. Orbanz and D. M. Roy (2015). Bayesian Models of Graphs, Arrays and Other Exchangeable Random Structures.
IEEE Trans. Pattern Anal. Mach. Intell. 37(2):437-461. 12/21



GRAPH LIMITS AND GRAPHONS




GRAPH LIMITS

LAy =A; = Bernoulli(1/2), i #j € N.

D. Glasscock, What is a graphon?, Notices of the AMS 62 (2015), no. 1. 13/21



GRAPH LIMITS

A=A i Bernoulli(1/2), i #j € N.

Limit (graph function):

f:10,1% = [0,1], (x,y) =

N —

D. Glasscock, What is a graphon?, Notices of the AMS 62 (2015), no. 1. 13/21



GRAPH LImITS (CONT'D)

Growing uniform attachment: Let Gy = o. For n > 2, construct
Gp from G,_q by adding one new vertex, then, drawing an edge
between each pair of non-adjacent vertices with probability %

D. Glasscock, What is a graphon?, Notices of the AMS 62 (2015), no. 1. 14/21



GRAPH LImITS (CONT'D)

Growing uniform attachment: Let Gy = o. For n > 2, construct
Gp from G,_q by adding one new vertex, then, drawing an edge
between each pair of non-adjacent vertices with probability %

Limit graphon:

f:00,17 = [0,7], (x,¥) — 1 — max(x, y).

D. Glasscock, What is a graphon?, Notices of the AMS 62 (2015), no. 1. 14/21



GRAPHONS

Definition

A labeled graphon is a symmetric, Lebesgue-measurable a.e.
function W : [0,1)? — [0,1]. A labeled graphon determines the
equivalence class of graphons

W] = {W?: (x,y) = W(e(x), 6(¥))},

where ¢ is an invertible, measure-preserving transformation of
[0,1]. Such equivalence classes are called unlabeled graphons.

D. Glasscock, What is a graphon?, Notices of the AMS 62 (2015), no. 1. 15/21



GRAPHONS (CONT'D)

Definition
The cut distance between two labeled graphons W and U is

oo(W,U)= inf  sup
&Y mpL 5 rco,q]

SxT
of [0,1] measurable

me—mey

Theorem
Every graphon is the é6p-limit of a sequence of finite graphs.

Theorem (Lovasz-Szegedy)
Let G be the space of unlabeled graphons (modulo weak
isometry). The metric space (G, dn) is compact.

D. Glasscock, What is a graphon?, Notices of the AMS 62 (2015), no. 1. 16/21



GRAPHON ESTIMATION




EXCHANGEABLE RANDOM GRAPHS

Adjacency matrix A = (A;) symmetric & binary:
Ay £ F(UL Uy, Ugjy) £ H{Ug < W(U3 Up)}
Sample W: [0,1])? — [0,1] measurable & symmetric (graphon);
Sample Uy, Uy, - - - Uniform|0, 1];
Sample Aj ~ Bernoulli(W(U;, U))) for i < J.

1

Utir.2n
w
TS W (U, Us)

P. Orbanz and D. M. Roy (2015). Bayesian Models of Graphs, Arrays and Other Exchangeable Random Structures.
IEEE Trans. Pattern Anal. Mach. Intell. 37(2):437-461. 17/21



GRAPHON ESTIMATION

Problem: Estimate graphon W from a set of observed networks.
Nonparametric regression: estimate W from {(U;, U;), Aji}i jen-
Challenge: design points {(U;, U;)} are latent.

Proposed estimators:

- Stochastic blockmodel approximation iairoldi etat, 2013], (Gao etat, 2015]
- Histogram estimator (sorting-and-smoothing) (chan and airoldi, 2014]

- Gaussian process model (Lioyd etat, 2012, [Orbanz and Roy, 2015]

E. M. Airoldi, T. B. Costa, and S. H. Chan. (2013) Stochastic Blockmodel Approximation of a Graphon:
Theory and Consistent Estimation. NIPS "13.

Gao, C,, Lu, Y. and Zhou, H. H. (2015). Rate-Optimal Graphon Estimation. Ann. Statist. 43(6):2624-2652.

S.H. Chan and E.M. Airoldi (2014). A Consistent Histogram Estimator for Exchangeable Graph Models. ICML "14.

J.R. Lloyd, P. Orbanz, Z. Ghahramani, and D.M. Roy (2012). Random Function Priors for Exchangeable Arrays with
Applications to Graphs and Relational Data. NIPS "12.

P. Orbanz and D. M. Roy (2015). Bayesian Models of Graphs, Arrays and Other Exchangeable Random Structures.
IEEE Trans. Pattern Anal. Mach. Intell. 37(2):437-461. 18/21



APPLICATIONS

- Community detection

- Link prediction:
P((i,)) € E) = P(A; = 1) = W(U;, Uy)

- Network comparison & hypothesis testing

Bickel, P. J. and Chen, A. (2009). A Nonparametric View of Network Models and Newman-Girvan and Other Modutar’\t\}fa
Proc. Natl. Acad. Sci. USA 106:21068-21073. /21



Real-world graphs are sparse (finite # of edges per vertex).

- Power-law degree distribution;
- Small-world phenomena.

P. Orbanz and D. M. Roy (2015). Bayesian Models of Graphs, Arrays and Other Exchangeable Random Structures.
IEEE Trans. Pattern Anal. Mach. Intell. 37(2):437-461. 20/21



Real-world graphs are sparse (finite # of edges per vertex).

- Power-law degree distribution;
- Small-world phenomena.

Theorem (Misspecification)
If a random graph is exchangeable, it is either dense or empty.

Proof.
For a random graph G, with n vertices, the expected proportion of
present edges is

p = W(x,y) dxdy.
(0,117

If p=0, Gy is empty; if p > 0, G, has p - (}) = ©(n?) edges in
expectation. O

P. Orbanz and D. M. Roy (2015). Bayesian Models of Graphs, Arrays and Other Exchangeable Random Structures.
IEEE Trans. Pattern Anal. Mach. Intell. 37(2):437-461. 20/21



OPEN PROBLEM

The limit object of a convergent sequence of sparse graphs in
the cut metric is always the empty graphon.

Representation theorems for sparse random graphs?

P. Orbanz and D. M. Roy (2015). Bayesian Models of Graphs, Arrays and Other Exchangeable Random Structures.
IEEE Trans. Pattern Anal. Mach. Intell. 37(2):437-461.
F. Caron and E.B. Fox (2015). Sparse Graphs using Exchangeable Random Measures. arXiv:1401.1137, 2015. 21/21



THANK YOU!
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