
Hadoop2 basic and Rhipe package

Xiaosu Tong

Department of Statistics
Purdue University

March 10, 2016

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 1 / 1

Hadoop

I Hadoop is a framework written in Java for running applications on
large clusters of commodity hardware and incorporates features and of
the MapReduce computing paradigm

I Hadoops HDFS is a highly fault-tolerant distributed file system. It
stores each file as a sequence of blocks. The blocks of a file are
replicated for fault tolerance

I THe block size and replication factor are configurable.

I MapReduce is a programming model and an associated
implementation for processing and generating key-value pairs on
HDFS.

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 2 / 1

Hadoop

I Hadoop is a framework written in Java for running applications on
large clusters of commodity hardware and incorporates features and of
the MapReduce computing paradigm

I Hadoops HDFS is a highly fault-tolerant distributed file system. It
stores each file as a sequence of blocks. The blocks of a file are
replicated for fault tolerance

I THe block size and replication factor are configurable.

I MapReduce is a programming model and an associated
implementation for processing and generating key-value pairs on
HDFS.

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 2 / 1

Hadoop

I Hadoop is a framework written in Java for running applications on
large clusters of commodity hardware and incorporates features and of
the MapReduce computing paradigm

I Hadoops HDFS is a highly fault-tolerant distributed file system. It
stores each file as a sequence of blocks. The blocks of a file are
replicated for fault tolerance

I THe block size and replication factor are configurable.

I MapReduce is a programming model and an associated
implementation for processing and generating key-value pairs on
HDFS.

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 2 / 1

Hadoop

I Hadoop is a framework written in Java for running applications on
large clusters of commodity hardware and incorporates features and of
the MapReduce computing paradigm

I Hadoops HDFS is a highly fault-tolerant distributed file system. It
stores each file as a sequence of blocks. The blocks of a file are
replicated for fault tolerance

I THe block size and replication factor are configurable.

I MapReduce is a programming model and an associated
implementation for processing and generating key-value pairs on
HDFS.

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 2 / 1

Hadoop: Data Storage

I namenode(master) - Manages the directory tree of the Hadoop File
System (HDFS), it holds the meta data for the HDFS. When in use,
all this information is stored in main memory, but also stored in disk.

I fsimage - Its the snapshot of the filesystem when namenode started
I Edit logs - Its the sequence of changes made to the filesystem after

namenode started

I secondarynamenode - Offloads HDFS checkpoint support for the
namenode. It is not a namenode failover or backup as the name may
imply.

I It gets the edit logs from the namenode in regular intervals and applies
to fsimage

I Once it has new fsimage, it copies back to namenode

I datanode(worker) - Stores data on the local drives of nodes as part of
the distributed HDFS. They store and retrieve blocks when they are
told to.

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 3 / 1

Hadoop: Data Storage

I namenode(master) - Manages the directory tree of the Hadoop File
System (HDFS), it holds the meta data for the HDFS. When in use,
all this information is stored in main memory, but also stored in disk.

I fsimage - Its the snapshot of the filesystem when namenode started
I Edit logs - Its the sequence of changes made to the filesystem after

namenode started

I secondarynamenode - Offloads HDFS checkpoint support for the
namenode. It is not a namenode failover or backup as the name may
imply.

I It gets the edit logs from the namenode in regular intervals and applies
to fsimage

I Once it has new fsimage, it copies back to namenode

I datanode(worker) - Stores data on the local drives of nodes as part of
the distributed HDFS. They store and retrieve blocks when they are
told to.

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 3 / 1

Hadoop: Data Storage

I namenode(master) - Manages the directory tree of the Hadoop File
System (HDFS), it holds the meta data for the HDFS. When in use,
all this information is stored in main memory, but also stored in disk.

I fsimage - Its the snapshot of the filesystem when namenode started
I Edit logs - Its the sequence of changes made to the filesystem after

namenode started

I secondarynamenode - Offloads HDFS checkpoint support for the
namenode. It is not a namenode failover or backup as the name may
imply.

I It gets the edit logs from the namenode in regular intervals and applies
to fsimage

I Once it has new fsimage, it copies back to namenode

I datanode(worker) - Stores data on the local drives of nodes as part of
the distributed HDFS. They store and retrieve blocks when they are
told to.

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 3 / 1

Hadoop: Data Storage

I namenode(master) - Manages the directory tree of the Hadoop File
System (HDFS), it holds the meta data for the HDFS. When in use,
all this information is stored in main memory, but also stored in disk.

I fsimage - Its the snapshot of the filesystem when namenode started
I Edit logs - Its the sequence of changes made to the filesystem after

namenode started

I secondarynamenode - Offloads HDFS checkpoint support for the
namenode. It is not a namenode failover or backup as the name may
imply.

I It gets the edit logs from the namenode in regular intervals and applies
to fsimage

I Once it has new fsimage, it copies back to namenode

I datanode(worker) - Stores data on the local drives of nodes as part of
the distributed HDFS. They store and retrieve blocks when they are
told to.

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 3 / 1

Hadoop: Data Storage

I namenode(master) - Manages the directory tree of the Hadoop File
System (HDFS), it holds the meta data for the HDFS. When in use,
all this information is stored in main memory, but also stored in disk.

I fsimage - Its the snapshot of the filesystem when namenode started
I Edit logs - Its the sequence of changes made to the filesystem after

namenode started

I secondarynamenode - Offloads HDFS checkpoint support for the
namenode. It is not a namenode failover or backup as the name may
imply.

I It gets the edit logs from the namenode in regular intervals and applies
to fsimage

I Once it has new fsimage, it copies back to namenode

I datanode(worker) - Stores data on the local drives of nodes as part of
the distributed HDFS. They store and retrieve blocks when they are
told to.

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 3 / 1

Hadoop: Data Storage

I namenode(master) - Manages the directory tree of the Hadoop File
System (HDFS), it holds the meta data for the HDFS. When in use,
all this information is stored in main memory, but also stored in disk.

I fsimage - Its the snapshot of the filesystem when namenode started
I Edit logs - Its the sequence of changes made to the filesystem after

namenode started

I secondarynamenode - Offloads HDFS checkpoint support for the
namenode. It is not a namenode failover or backup as the name may
imply.

I It gets the edit logs from the namenode in regular intervals and applies
to fsimage

I Once it has new fsimage, it copies back to namenode

I datanode(worker) - Stores data on the local drives of nodes as part of
the distributed HDFS. They store and retrieve blocks when they are
told to.

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 3 / 1

Hadoop: Data Storage

I namenode(master) - Manages the directory tree of the Hadoop File
System (HDFS), it holds the meta data for the HDFS. When in use,
all this information is stored in main memory, but also stored in disk.

I fsimage - Its the snapshot of the filesystem when namenode started
I Edit logs - Its the sequence of changes made to the filesystem after

namenode started

I secondarynamenode - Offloads HDFS checkpoint support for the
namenode. It is not a namenode failover or backup as the name may
imply.

I It gets the edit logs from the namenode in regular intervals and applies
to fsimage

I Once it has new fsimage, it copies back to namenode

I datanode(worker) - Stores data on the local drives of nodes as part of
the distributed HDFS. They store and retrieve blocks when they are
told to.

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 3 / 1

Hadoop: Computation

Hadoop1

I jobtracker - Schedules and issues map reduce jobs for tasktracker
nodes across the cluster.

I tasktracker - Executes the map and reduce jobs issued by the
jobtracker.

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 4 / 1

Hadoop: Computation

Hadoop1

I jobtracker - Schedules and issues map reduce jobs for tasktracker
nodes across the cluster.

I tasktracker - Executes the map and reduce jobs issued by the
jobtracker.

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 4 / 1

Hadoop2: Computation

Hadoop2
Resource Manager(RM) node:

I job is submitted to Resource Manager (asks for job ID, checks the
output path ...)

I Applications Manager(AsM) - manages running jobs in the cluster.

I Scheduler - manages and enforces the resource scheduling policy in
the cluster

NodeManager(NM) node:

I ApplicationMaster(AM) - A per-job master that manages the
application’s life cycle jobs on the cluster.

I Container, it is an Unix process which is assigned with specific
amount of core and memory.

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 5 / 1

Hadoop2: Computation

Hadoop2
Resource Manager(RM) node:

I job is submitted to Resource Manager (asks for job ID, checks the
output path ...)

I Applications Manager(AsM) - manages running jobs in the cluster.

I Scheduler - manages and enforces the resource scheduling policy in
the cluster

NodeManager(NM) node:

I ApplicationMaster(AM) - A per-job master that manages the
application’s life cycle jobs on the cluster.

I Container, it is an Unix process which is assigned with specific
amount of core and memory.

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 5 / 1

Hadoop2: Computation

Hadoop2
Resource Manager(RM) node:

I job is submitted to Resource Manager (asks for job ID, checks the
output path ...)

I Applications Manager(AsM) - manages running jobs in the cluster.

I Scheduler - manages and enforces the resource scheduling policy in
the cluster

NodeManager(NM) node:

I ApplicationMaster(AM) - A per-job master that manages the
application’s life cycle jobs on the cluster.

I Container, it is an Unix process which is assigned with specific
amount of core and memory.

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 5 / 1

Hadoop2: Computation

Hadoop2
Resource Manager(RM) node:

I job is submitted to Resource Manager (asks for job ID, checks the
output path ...)

I Applications Manager(AsM) - manages running jobs in the cluster.

I Scheduler - manages and enforces the resource scheduling policy in
the cluster

NodeManager(NM) node:

I ApplicationMaster(AM) - A per-job master that manages the
application’s life cycle jobs on the cluster.

I Container, it is an Unix process which is assigned with specific
amount of core and memory.

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 5 / 1

Hadoop2: Computation

Hadoop2
Resource Manager(RM) node:

I job is submitted to Resource Manager (asks for job ID, checks the
output path ...)

I Applications Manager(AsM) - manages running jobs in the cluster.

I Scheduler - manages and enforces the resource scheduling policy in
the cluster

NodeManager(NM) node:

I ApplicationMaster(AM) - A per-job master that manages the
application’s life cycle jobs on the cluster.

I Container, it is an Unix process which is assigned with specific
amount of core and memory.

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 5 / 1

Hadoop2: Computation

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 6 / 1

Hadoop2: Computation

I Client ↔ ApplicationsManager in ResourceManager

I ResourceManager(RM) ↔ NodeManager. Finds an available
container for running the ApplicationMaster

I ApplicationMaster ↔ ResourceManager. Ask for containers for all
map and reduce tasks.

I ApplicationMaster ↔ NodeManager. Starts the containers and run
JVMs.

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 7 / 1

Hadoop2: Computation

I Client ↔ ApplicationsManager in ResourceManager

I ResourceManager(RM) ↔ NodeManager. Finds an available
container for running the ApplicationMaster

I ApplicationMaster ↔ ResourceManager. Ask for containers for all
map and reduce tasks.

I ApplicationMaster ↔ NodeManager. Starts the containers and run
JVMs.

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 7 / 1

Hadoop2: Computation

I Client ↔ ApplicationsManager in ResourceManager

I ResourceManager(RM) ↔ NodeManager. Finds an available
container for running the ApplicationMaster

I ApplicationMaster ↔ ResourceManager. Ask for containers for all
map and reduce tasks.

I ApplicationMaster ↔ NodeManager. Starts the containers and run
JVMs.

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 7 / 1

Hadoop2: Computation

I Client ↔ ApplicationsManager in ResourceManager

I ResourceManager(RM) ↔ NodeManager. Finds an available
container for running the ApplicationMaster

I ApplicationMaster ↔ ResourceManager. Ask for containers for all
map and reduce tasks.

I ApplicationMaster ↔ NodeManager. Starts the containers and run
JVMs.

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 7 / 1

Hadoop2: Computation

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 8 / 1

MapReduce

I Map function: mapping one input key-value pair to one or multiple
intermediate key-value pairs

I Reduce function: aggregating multiple key-value pairs who shares
same key to be one key-value pair.

I Shuffle and Sort

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 9 / 1

MapReduce

I Map function: mapping one input key-value pair to one or multiple
intermediate key-value pairs

I Reduce function: aggregating multiple key-value pairs who shares
same key to be one key-value pair.

I Shuffle and Sort

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 9 / 1

MapReduce

I Map function: mapping one input key-value pair to one or multiple
intermediate key-value pairs

I Reduce function: aggregating multiple key-value pairs who shares
same key to be one key-value pair.

I Shuffle and Sort

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 9 / 1

MapReduce

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 10 / 1

Rhipe

RHIPE

I It was first developed by Saptarshi Guha as part of his PhD thesis in
the Purdue Statistics Department.

I RHIPE (hree-pay’) is the R and Hadoop Integrated Programming
Environment. RHIPE is a merger of R and Hadoop. It is a R package
that communicates with Hadoop to carry out the big, parallel
computations.

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 11 / 1

Rhipe

RHIPE

I It was first developed by Saptarshi Guha as part of his PhD thesis in
the Purdue Statistics Department.

I RHIPE (hree-pay’) is the R and Hadoop Integrated Programming
Environment. RHIPE is a merger of R and Hadoop. It is a R package
that communicates with Hadoop to carry out the big, parallel
computations.

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 11 / 1

Prerequisites for Rhipe

I Protocol Buffers 2.5
Protocol Buffers are a method of serializing structured data. They are
useful in developing programs to communicate with each other over a
wire or for storing data.

tar -xzf protobuf-2.5.tar.gz

cd protobuf-2.5

sudo ./configure

sudo make

sudo make install

Protocol Buffers library will be located in /usr/local/lib

sudo ln -s protobuf-2.5/lib/lib* /usr/local/lib/

I rJava library

I testthat

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 12 / 1

Rhipe Installation

I environment setting in .bashrc

export PKG_CONFIG_PATH=

/usr/local/lib/pkgconfig/

export LD_LIBRARY_PATH=

/usr/local/lib:

/usr/lib/R/lib:

/usr/lib/jvm/java-6-openjdk-amd64/jre/lib/amd64/server

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 13 / 1

Rhipe Installation

I Download Rhipe pacakge

wget http://ml.stat.purdue.edu/rhipebin/

Rhipe_0.75.1.6.tar.gz

I Install Rhipe package

R CMD INSTALL Rhipe_0.75.1.6.tar.gz

>install.packages(

+"Rhipe_0.75.1.6.tar.gz", repos=NULL, type="source"

+)

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 14 / 1

Pushing

I Every node in the cluster should have exactly same R and all installed
packages including Rhipe.

> library(R)

> rhinit()

> hdfs.setwd("/app/hadoop")

> bashRhipeArchive("RhipeLib")

This step is only needed to be done for one time.

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 15 / 1

Start Rhipe

> library(Rhipe)

> rhinit()

> rhoptions(zips = "/app/hadoop/RhipeLib.tar.gz")

> rhoptions(

+ runner =

+ "sh ./RhipeLib/library/Rhipe/bin/RhipeMapReduce.sh"

+)

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 16 / 1

First Rhipe Job: words counts

I map expression

I reduce expression

I excution function

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 17 / 1

First Rhipe Job: words counts

I input key-value pairs:

(1:"A singular fatality has ... of every description.")

(2:"Vasari says, and rightly, ... pages of Manuscript.")

...

(30:"Alexander von Humboldt ... of Leonardo’s genius:")

I map step

I output key-value pairs:

("A":1), ("singular",1), ("fatality":1), ("has":1), ...

("of":1), ("Leonardos":1), ("genius":1)

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 18 / 1

First Rhipe Job: words counts

I map expression:

map <- expression({

for(i in seq_along(map.keys)) {

line = gsub("[[:punct:]]", "", map.values[[i]])

line = strsplit(line, split=" +")[[1]]

for(word in line) {

rhcollect(word, 1)

}

}

})

map.keys and map.values are two list objects in R which created by
Rhipe. They are all the input keys and input values correspondingly.

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 19 / 1

First Rhipe Job: words counts

I input file is text, map expression will be evaluated on each block.

I for will loop over all rows in that block.

I rhcollect function will collect intermediate key-value pairs and
write them onto local disk, not HDFS yet.

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 20 / 1

First Rhipe Job: words counts

I input file is text, map expression will be evaluated on each block.

I for will loop over all rows in that block.

I rhcollect function will collect intermediate key-value pairs and
write them onto local disk, not HDFS yet.

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 20 / 1

First Rhipe Job: words counts

I input file is text, map expression will be evaluated on each block.

I for will loop over all rows in that block.

I rhcollect function will collect intermediate key-value pairs and
write them onto local disk, not HDFS yet.

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 20 / 1

First Rhipe Job: words counts

I Between the map phase and reduce phase of a MapReduce job,
Hadoop sends all the intermediate values for a given key to the
reducer.

I The intermediate values for a given key are located on several
compute nodes and need to be shuffled (sent across the network).

I Some operations do not need access to all of the data (intermediate
values).

I Combiner is that the reduce run locally on mapper outputs before
they are sent for the final reduce.

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 21 / 1

First Rhipe Job: words counts

I Between the map phase and reduce phase of a MapReduce job,
Hadoop sends all the intermediate values for a given key to the
reducer.

I The intermediate values for a given key are located on several
compute nodes and need to be shuffled (sent across the network).

I Some operations do not need access to all of the data (intermediate
values).

I Combiner is that the reduce run locally on mapper outputs before
they are sent for the final reduce.

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 21 / 1

First Rhipe Job: words counts

I Between the map phase and reduce phase of a MapReduce job,
Hadoop sends all the intermediate values for a given key to the
reducer.

I The intermediate values for a given key are located on several
compute nodes and need to be shuffled (sent across the network).

I Some operations do not need access to all of the data (intermediate
values).

I Combiner is that the reduce run locally on mapper outputs before
they are sent for the final reduce.

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 21 / 1

First Rhipe Job: words counts

I Between the map phase and reduce phase of a MapReduce job,
Hadoop sends all the intermediate values for a given key to the
reducer.

I The intermediate values for a given key are located on several
compute nodes and need to be shuffled (sent across the network).

I Some operations do not need access to all of the data (intermediate
values).

I Combiner is that the reduce run locally on mapper outputs before
they are sent for the final reduce.

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 21 / 1

First Rhipe Job: words counts

I input key-value pairs:

("A":1), ("A":1), ..., ("A":1), ("singular",1), ...,

("singular",1), ("fatality":1), ("has":1), ..., ("has":1),

("of":1), ..., ("of":1), ("Leonardos":1), ("genius":1)

I reduce step

I output key-value pairs:

("A":35), ("singular",4), ("fatality":1), ("has":10), ...

("of":33), ("Leonardos":1), ("genius":2)

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 22 / 1

First Rhipe Job: words counts

I reduce expression:

reduce <- expression(

pre = {

count = 0

},

reduce = {

count = count + sum(unlist(reduce.values))

},

post = {

rhcollect(reduce.key, count)

}

)

reduce.key is one of the unique output key from map step.
reduce.values is a list object in R which collects all values
corresponding to the reduce.key.

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 23 / 1

First Rhipe Job: words counts

I excution function:

mr <- rhwatch(

map = map,

reduce = reduce,

input = rhfmt(

"/app/hadoop/words.txt",type="text"

),

output = rhfmt(

"/app/hadoop/wordcount", type="sequence"

),

mapred = list(mapred.reduce.tasks=5),

readback = FALSE,

combiner = TRUE

)

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 24 / 1

First Rhipe Job: words counts

I read the result back to R

rst <- rhread("/app/hadoop/wordcount")

I key-value pairs will be read back as a list object in R.

I Each element is a list with length two. First is the key, and the
second is the value.

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 25 / 1

Download in Parallel

Huge number of data files to be downloaded
Airline dataset

http://stat-computing.org/dataexpo/2009/1987.csv.bz2

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 26 / 1

Download in Parallel

map <- expression({

lapply(map.values, function(r){

x = 1986 + r

on <- sprintf(

"http://stat-computing.org/dataexpo/2009/%s.csv.bz2",

x

)

fn <- sprintf("./tmp/%s.csv.bz2", x)

system(sprintf("wget %s --directory-prefix ./tmp", on))

system(sprintf("bunzip2 %s", fn))

})

})

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 27 / 1

Download in Parallel

mr <- rhwatch(

map = map,

input = rep(length(1987:2008), 2),

output = rhfmt("/app/hadoop/dowload", type="sequence"),

mapred = list(mapred.reduce.tasks=0),

readback = FALSE

)

Xiaosu Tong (Purdue University) Hadoop & Rhipe March 10, 2016 28 / 1

